Features and Benefits

- Actuation force as low as 0.1N and sensitivity range to 20N
- Easily customizable to a wide range of sizes
- Cost Effective
- Ultra Thin
- Robust; up to 10M actuations
- Simple and easy to integrate

Description

Interlink Electronics FSR™ 400 series is part of the single zone Force Sensing Resistor™ family. Force Sensing Resistors, or FSRs, are robust polymer thick film (PTF) devices that exhibit a decrease in resistance with increase in force applied to the surface of the sensor. This force sensitivity is optimized for use in human touch control of electronic devices such as automotive electronics, medical systems, and in industrial and robotics applications.

The 400 series sensors come in five different models with three different connecting options.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSR 400 Short</td>
<td>5mm Circle X 20mm</td>
</tr>
<tr>
<td>FSR 400</td>
<td>5mm Circle X 38mm</td>
</tr>
<tr>
<td>FSR 402</td>
<td>13mm Circle X 56mm</td>
</tr>
<tr>
<td>FSR 406</td>
<td>38mm Square X 83mm</td>
</tr>
<tr>
<td>FSR 408</td>
<td>10mm X 622mm Strip</td>
</tr>
</tbody>
</table>

Contact Us

United States
Corporate Office
Interlink Electronics, Inc.
546 Flynn Road
Camarillo, CA 93012, USA
Phone: +1-805-484-8855
Fax: +1-805-484-9457
Website: www.interlinkelectronics.com
Sales and support: fsr@interlinkelectronics.com

Japan
Japan Sales Office
Phone: +81-45-263-6500
Fax: +81-45-263-6501
Website: www.interlinkelec.co.jp
Device Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuation Force*</td>
<td>~0.2N min</td>
</tr>
<tr>
<td>Force Sensitivity Range*</td>
<td>~0.2N - 20N</td>
</tr>
<tr>
<td>Force Resolution</td>
<td>Continuous (analog)</td>
</tr>
<tr>
<td>Force Repeatability Single Part</td>
<td>+/- 2%</td>
</tr>
<tr>
<td>Force Repeatability Part to Part</td>
<td>+/- 6%</td>
</tr>
<tr>
<td>Non-Actuated Resistance</td>
<td>>10 Mohms</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>+10% Average ($R_s - R_n)/R_s</td>
</tr>
<tr>
<td>Device Rise Time</td>
<td>< 3 microseconds</td>
</tr>
<tr>
<td>Long Term Drift</td>
<td>< 5% log10 (time)</td>
</tr>
<tr>
<td>Operating Temperature Performance</td>
<td></td>
</tr>
<tr>
<td>Cold: -40°C after 1 hour</td>
<td>-5% average resistance change</td>
</tr>
<tr>
<td>Hot: +85°C after 1 hour</td>
<td>-15% average resistance change</td>
</tr>
<tr>
<td>Hot Humid: +85°C 95RH after 1 hour</td>
<td>+10% average resistance change</td>
</tr>
<tr>
<td>Storage Temperature Performance</td>
<td></td>
</tr>
<tr>
<td>Cold: -25°C after 120 hours</td>
<td>-10% average resistance change</td>
</tr>
<tr>
<td>Hot: +85°C after 120 hours</td>
<td>-5% average resistance change</td>
</tr>
<tr>
<td>Hot Humid: +85°C 95RH after 240 hours</td>
<td>+30% average resistance change</td>
</tr>
<tr>
<td>Tap Durability</td>
<td>-10% average resistance change</td>
</tr>
<tr>
<td>10 Million actuations, 1kg, 4Hz</td>
<td></td>
</tr>
<tr>
<td>Standing Load Durability</td>
<td>-5% average resistance change</td>
</tr>
<tr>
<td>2.5kg for 24 hours</td>
<td></td>
</tr>
<tr>
<td>EMI</td>
<td>Generates No EMI</td>
</tr>
<tr>
<td>ESD</td>
<td>Not ESD sensitive</td>
</tr>
<tr>
<td>UL:</td>
<td>All materials UL grade 94 V-1 or better</td>
</tr>
<tr>
<td>RoHS:</td>
<td>Compliant</td>
</tr>
</tbody>
</table>

Specifications are derived from measurements taken at 1000 grams, and are given as (one standard deviation / mean), unless otherwise noted.

*Typical value. Force dependent on actuation interface, mechanics, and measurement electronics.
Application Information

For specific application needs please contact Interlink Electronics support team. An integration guide and Hardware Development Kit (HDK) are also available.

FSRs are two-wire devices with a resistance that depends on applied force. To the right is a force vs. resistance graph that illustrates a typical FSR response characteristic. Please note that the graph values are reference only and actual values are dependent upon actuation system mechanics and sensor geometry.

For a simple force-to-voltage conversion, the FSR device is tied to a measuring resistor in a voltage divider (see figure below) and the output is described by the following equation.

\[V_{OUT} = \frac{R_M V}{R_M + R_{FSR}} \]

In the shown configuration, the output voltage increases with increasing force. If RFSR and RM are swapped, the output swing will decrease with increasing force.

The measuring resistor, RM, is chosen to maximize the desired force sensitivity range and to limit current. Depending on the impedance requirements of the measuring circuit, the voltage divider could be followed by an op-amp.

A family of force vs. VOUT curves is shown on the graph below for a standard FSR in a voltage divider configuration with various RM resistors. A V+ of +5V was used for these examples. Please note that the graph values are for reference only and will vary between different sensors and applications.

Refer to the FSR integration guide for more integration methods and techniques.
Model 400 Short Tail:
- Active Area: \varnothing 5.6mm
- Nominal Thickness: 0.30mm
- Switch Travel: 0.05mm

Available Part Numbers:
- PN: 34-47021 Model 400 Short Tail
 - No contacts or solder tabs
- PN: 34-00005 Model 400 Short Tail
 - with Female Contacts
- PN: 34-00006 Model 400 Short Tail
 - with Female Contacts & Housing
- PN: 34-00004 Model 400 Short Tail
 - with Solder Tabs

Sensor Mechanical Data

Exploded View

Sensor mechanical 3D CAD data can be found on our website at www.interlinkelectronics.com/Support
Model 400:
Active Area: \varnothing 0.30mm
Nominal Thickness: 0.35mm
Switch Travel: 0.05mm

Available Part Numbers:
- PN: 34-00007 Model 400
 - No contacts or solder tabs
- PN: 34-00011 Model 400
 - with Female Contacts
- PN: 34-44001 Model 400
 - with Female Contacts & Housing
- PN: 30-49649 Model 400
 - with Solder Tabs

Sensor Mechanical Data

![Sensor Mechanical Data Diagram]

Exploded View

Sensor mechanical 3D CAD data can be found on our website at www.interlinkelectronics.com/Support
Model 402:
- Active Area: \(\varnothing 14.68 \text{mm} \)
- Nominal Thickness: 0.46mm
- Switch Travel: 0.15mm

Available Part Numbers:
- PN: 44-29103 Model 402
 - No contacts or solder tabs
- PN: 34-00012 Model 402
 - with Female Contacts
- PN: 34-00001 Model 402
 - with Female Contacts & Housing
- PN: 30-81794 Model 402
 - with Solder Tabs

Sensor Mechanical Data

- Ø14.68 (ACTIVE AREA)
- Ø18.3
- T=0.46±0.05
- 0.13

Exploded View

Sensor mechanical 3D CAD data can be found on our website at www.interlinkelectronics.com/Support
Model 406:
Active Area: 39.6mm x 39.6mm
Nominal Thickness: 0.46mm
Switch Travel: 0.15mm

Available Part Numbers:
PN: 34-00009 Model 406
- No contacts or solder tabs
PN: 34-00013 Model 406
- with Female Contacts
PN: 34-61152 Model 406
- with Female Contacts & Housing
PN: 30-73258 Model 406
- with Solder Tabs

Sensor Mechanical Data

Exploded View

Sensor mechanical 3D CAD data can be found on our website at www.interlinkelectronics.com/Support
Model 408:
- Active Area: 609.6 x 10.2mm
- Nominal Thickness: 0.41mm
- Switch Travel: 0.15mm

Available Part Numbers:
- PN: 34-00010 Model 408
 - No contacts or solder tabs
- PN: 34-75319 Model 408
 - with Female Contacts
- PN: 34-23845 Model 408
 - with Female Contacts & Housing
- PN: 30-61710 Model 408
 - with Solder Tabs

Sensor mechanical 3D CAD data can be found on our website at www.interlinkelectronics.com/Support